Size and time-resolved growth rate measurements of 1 to 5 nm freshly formed atmospheric nuclei

نویسندگان

  • C. Kuang
  • M. Chen
  • J. Zhao
  • J. Smith
  • P. H. McMurry
  • J. Wang
چکیده

This study presents measurements of size and time-resolved particle diameter growth rates for freshly nucleated particles down to 1 nm geometric diameter. Novel data analysis methods were developed, de-coupling for the first time the size and time-dependence of particle growth rates by fitting the aerosol general dynamic equation to size distributions obtained at an instant in time. Size distributions of freshly nucleated total aerosol (neutral and charged) were measured during two intensive measurement campaigns in different environments (Atlanta, GA and Boulder, CO) using a recently developed electrical mobility spectrometer with a diethylene glycol-based ultrafine condensation particle counter as the particle detector. One new particle formation (NPF) event from each campaign was analyzed in detail. At a given instant in time during the NPF event, sizeresolved growth rates were obtained directly from measured size distributions and were found to increase approximately linearly with particle size from ∼1 to 3 nm geometric diameter, increasing from 5.5± 0.8 to 7.6± 0.6 nm h−1 in Atlanta (13:00) and from 5.6± 2 to 27± 5 nm h−1 in Boulder (13:00). The resulting growth rate enhancement0, defined as the ratio of the observed growth rate to the growth rate due to the condensation of sulfuric acid only, was found to increase approximately linearly with size from ∼1 to 3 nm geometric diameter. For the presented NPF events, values for 0 had lower limits that approached ∼1 at 1.2 nm geometric diameter in Atlanta and ∼3 at 0.8 nm geometric diameter in Boulder, and had upper limits that reached 8.3 at 4.1 nm geometric diameter in Atlanta and 25 at 2.7 nm geometric diameter in Boulder. Nucleated particle survival probability calculations comparing the effects of constant and size-dependent growth indicate that neglecting the strong dependence of growth rate on size from 1 to 3 nm observed in this study could lead to a significant overestimation of CCN survival probability.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Identification and quantification of particle growth channels during new particle formation

Atmospheric new particle formation (NPF) is a key source of ambient ultrafine particles that may contribute substantially to the global production of cloud condensation nuclei (CCN). While NPF is driven by atmospheric nucleation, its impact on CCN concentration depends strongly on atmospheric growth mechanisms since the growth rate must exceed the loss rate due to scavenging in order for the pa...

متن کامل

Semi-empirical parameterization of size-dependent atmospheric nanoparticle growth in continental environments

The capability to accurately yet efficiently represent atmospheric nanoparticle growth by biogenic and anthropogenic secondary organics is a challenge for current atmospheric large-scale models. It is, however, crucial to predict nanoparticle growth accurately in order to reliably estimate the atmospheric cloud condensation nuclei (CCN) concentrations. In this work we introduce a simple semiemp...

متن کامل

Applying the Condensation Particle Counter Battery (CPCB) to study the water-affinity of freshly-formed 2–9 nm particles in boreal forest

Measurements on the composition of nanometersized atmospheric particles are the key to understand which vapors participate in the secondary aerosol formation processes. Knowledge on these processes is crucial in assessing the climatic effects of secondary aerosol formation. We present data of >2 nm particle concentrations and their water-affinity measured with the Condensation Particle Counter ...

متن کامل

Investigating the Effect of Ultrasonification Time on Transition from Monolithic Porous Network to Size-Tunable Monodispersed Silica Nanospheres via Stöber Method

Abstract Uniform colloidal monodispersed silica nanoparticles were synthesized via stöber method using ammonia as a basic catalyst. Field Emission Scanning Electron Microscope (FESEM) was confirmed the homogeneous nanospheres. The decrease of TEOS concentration (0.067 to 0.012 mol L-1) and an increase of H2O concentration (3 to 14 mol L-1) at 14 mol L-1 NH3 fixed accelerated the rate of h...

متن کامل

Atmospheric sulphuric acid and aerosol formation: implications from atmospheric measurements for nucleation and early growth mechanisms

We have investigated the formation and early growth of atmospheric secondary aerosol particles building on atmospheric measurements. The measurements were part of the QUEST 2 campaign which took place in spring 2003 in Hyytiälä (Finland). During the campaign numerous aerosol particle formation events occurred of which 15 were accompanied by gaseous sulphuric acid measurements. Our detailed anal...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012